16^-3x=(1/64)^x+3

Simple and best practice solution for 16^-3x=(1/64)^x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16^-3x=(1/64)^x+3 equation:



16^-3x=(1/64)^x+3
We move all terms to the left:
16^-3x-((1/64)^x+3)=0
Domain of the equation: 64)^x+3)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-3x-((+1/64)^x+3)+16^=0
We add all the numbers together, and all the variables
-3x-((+1/64)^x+3)=0
We multiply all the terms by the denominator
-3x*64)^x+3)-((+1=0
Wy multiply elements
-192x^2+1=0
a = -192; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-192)·1
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-192}=\frac{0-16\sqrt{3}}{-384} =-\frac{16\sqrt{3}}{-384} =-\frac{\sqrt{3}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-192}=\frac{0+16\sqrt{3}}{-384} =\frac{16\sqrt{3}}{-384} =\frac{\sqrt{3}}{-24} $

See similar equations:

| 15/x=0.3/0.12 | | 4p+2-5=1/3 | | 1/5w+9=21 | | Y=(7/8)t | | 5n=6=-4 | | X+4/3-2y-3/5=2 | | 0.17/0.51=3/x | | 4x-(3x-4)-9=1-(3-x)-7 | | a=42=15 | | 4(x-3=6(-1+x)+4) | | 4/5x-16=44 | | 0.2x-1.1=4.3 | | 5(x-6=-80) | | 6.2/x=5.8/2.5 | | 5(b+10)+8=8b-1 | | -2a-5=13-(2a-2) | | 180=2x+x-20 | | 0.01x+0.09=1.1 | | X+3/2+x+5/3=7 | | (2x+9)/11=18 | | 3.2/2.4=x/18 | | (4,6)m=9/8 | | 30=6-4w | | 4x-4-8=18x-12-7 | | 49v^2+56v+12=0 | | a+(a-2)=(a+5)(a+3) | | 10(g+6)+6=3g3 | | 5+18s-30=-3+16s-2 | | 5(0.3x-0.4)=0.5 | | 1/5^x=11 | | 5x-90=150 | | 11-x/3=8 |

Equations solver categories